
Copyright is held by the author / owner(s).
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012.
ISBN 978-1-4503-1435-0/12/0008

Advanced GPU-based Ray Casting for Bricked Datasets
Nikolay Gavrilov, Vadim Turlapov

Lobachevsky State University of Nizhni Novgorod, Russia

 (a) (b) (b)

Figure 1: a) bounding boxes fitting; b) empty space skipping and early ray termination; c) tri-linear (left) & tri-cubic (right) interpolation

modes side-by-side comparison (MANIX test dataset).

1. Introduction

Since the 90s, the Direct Volume Rendering shows itself as an

efficient tool for the visual analysis of volumetric datasets. There

are approaches that allow for the real-time Ray Casting for

visualization of the datasets that can be divided into bricks and

entirely loaded into the GPU memory. We describe particular

details, implemented in our volume rendering engine, that

significantly improve rendering quality and performance.

2. Implementation Aspects

In order to be able to visualize the datasets, that do not fit into a

single 3D texture memory, we make the data decomposition into

bricks. In order to perform correct splicing without any artifacts

on the bricks’ bounds we perform the bricks’ 2-voxel overlapping

(3-voxel in tri-cubic filtering case). To render the dataset we

render each brick one after another. The bricking allows us to

ignore fully empty bricks and do not upload them to the GPU.

Using small 3D textures augments the sampling speed from them

during the ray casting process. The front-to-back rendering order

of the bricks allows us to ignore those image regions of the bricks

that are occluded from the observer by the previously rendered

bricks, so that we obtain a ‘high-level’ early ray termination

(Figure 1b). The empty space skipping strategy is also well

applicable for the decomposed data because we can bound each

single brick separately, which is much easier than to bound the

whole dataset (Vincent V. et al, 2008). For each brick we use a

simple bounding box, which is fitted automatically to the visible

data while the user is applying the transfer function (Figure 1a).

Our engine also provides high rendering quality by reducing

certain artifacts. Because of the finite number of the steps the ray

may skip meaningful features in the dataset. As the result ‘wood-

like’ image artifacts may appear. This wood-likeness appears

because rays start from the same plane (i.e. bounding box face).

This artifacts’ regularity can be removed by randomization of ray

start positions. Then these obtained ‘randomized’ images can be

accumulated so that a user will see the average image without

noise. The visualization quality can be improved by the tri-cubic

filtering instead of the common tri-linear one. In order to make a

single tri-cubic sampling it is necessary to make 8 tri-linear

samplings from the same dataset (Daniel R. et al, 2008).

The optimal brick sizes appeared to be 64³ and 128³ cubes

depending on the dataset. High performance is mostly caused by

the empty space skipping and the small bricks’ size. However, the

choice of a too small brick size (e.g. of size 32³) involves the

enormous amount of the bricks to draw, which obviously causes

the lack of rendering performance. The number of samplings per

step is not so crucial aspect for the rendering performance, e.g. the

simple DVR is 3 times faster than DVR with tri-cubic filtering,

but not 8 times. The rendering time is also wasted when switching

to next brick, because we are to copy the rendered result to the

OpenGL Frame Buffer for reading. We use this buffer to merge

the rendered bricks and to perform possible early ray termination

before casting a ray.

References
Daniel R. et al, 2008. Efficient GPU-Based Texture Interpolation

using Uniform B-Splines, In IEEE Transactions on Journal of

Graphics, GPU, & Game Tools, Vol. 13, No. 4, pp 61-69.

Daniel R. et al, 2006, Optimizing GPU Volume Rendering, Li

Journal of WSCG'06 14(1-3), pp. 9-16.

Guthe, S. et al, 2002, Efficient Interactive rendering of large

volume data sets, VIS 2002. IEEE, pp. 53 - 60

Johanna B. et al, Smooth Mixed-Resolution GPU Volume

Rendering, IEEE International Symposium on Volume and

Point-Based Graphics (VG ’08); 2008. pp. 163–170.

Vincent V. et al, 2008, Simple Empty-Space Removal for

Interactive Volume Rendering, Journal of Graphics, GPU,

and Game Tools, Volume 13, Issue 2, pp. 21-36

